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LOCAL HEAT TRANSFER ON A PLATE WITH AN
INITIAL UNHEATED PART WITH LAMINAR FLOW
IN THE BOUNDARY LAYER

V. M. Legkii and A, S. Makarov UDC 536,244

Measurements are reported on local heat transfer for a plate in a current of air with a constant wall
temperature in the heat-transfer zone; a water-cooled sectional plate was employed, namely, a calorimeter_
of length 0.3 m and thickness 0.008 m., The leading edge of the plate took the form of a circle of radius R =
0.072 m, which provided 2.3 + 0.2% turbulence in the incident flow, and also a stable laminar mode of flow in
the boundary layer up to a Reynolds number of 140-10°, The air temperature was 50°C, while the surface
temperature of the plate in the heat-transfer zone was 10°C, with the speed of the air flow in the range 2-35
m/sec. The heat-transfer measurements were made with transducers for two cases: with the plate heated
throughout and with the plate having an initial unheated part, whose length was 0.0235, 0.0385, or 0.1635 m.

The results for complete heating agreed within +12% with Polhausen's formula. The initial unheated
part reduced the heat-transfer rate, and the effect of this was closely described by the correction factor
derived by Eckert from the analytical solution,

Dep. 782-76, March 1, 1976.
Original article submitted May 25, 1974.

HEAT TRANSFER IN PLASTIC-FILM CLOCHES

G. V. Kobylyanskii UDC 536.2.01

The thermal conditions in unheated plastic cloches are determined by the energy accumulated in the soil
when night conditions are unfavorable; proper use requires evaluation of the various types of heat logs from
such structures. The heat loss from a cloche consists of convective and radiation fluxes from the surface of
the soil, those from the surface of the cloche itself, and radiation from surrounding areas.

A previous study has been made [1] of the thermal conditions in such cloches on the basis of convection,
radiation, and freezing of the surface of the soil during night frosts; the solutions indicate that the spectral
characteristics of the structure influence the balance between the convective and radiative fluxes, with the
latter predominant and in any practical case being not less than 70% of the total heat loss.

Figure 1 shows the air temperature t; under the film as a function of the spectral characteristics of the
cloche, which themselves determine the radiation emission. The relationship is nonlinear and indicates that
the transmission coefficient D, for long~wave radiation does not by itself fully characterize the thermal pro-
tection provided by a cloche. )
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Production and Printing Section, All-Union Research Institute of Scientific and Technical Information VINITI,
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Fig. 1. Air temperature in a cloche as a func-
tion of the spectral characteristics of the cover-
ing (outside air temperature, —6°C, thermal
conductivity and thermal diffusivity of soil under
film, 0.8 W/m -deg and 3 -10~¢ m%/sec). The
numbers on the curves are the values of ry. The
values for ty are in °C.

The results show that one of the major features for classifying such devices, which are used, for
example, to protect plants from frost, is the reflection coefficient r, for long-wave radiation.
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Original article submitted February 20, 1975,

THERMAL CONDUCTIVITY OF FINE-GRAINED
GRA PHITIZED COKE AT 350-2500°K

P. E. Khizhnyak, A. N. Lutkov, UDC 536.2.082
B. K. Dymov, and V. N. Mikhailov

Artificial graphite is commonly made from finely divided coke from petroleum and other sources, which
is first heat-treated (graphitized) above 1500°K, Reliable values can be obtained for the heat-transfer param-
eters for a bed of such material after compression on the basis of the experiments reported here. The ther-
mal conductivity was determined for the range 350-1300°K by the tube method, while the range 1300-2500°K
was covered by using a cylinder with an internal heat source.

Measurements were made of the thermal conductivity of petroleum coke and pyrolysis coke of particle
size up to 15 mm in air at pressures of 7-10 Pa and in helium at 15 10! Pa after compression of the powder
at pressures up to 16,000 Pa, the results covering the range 350-2500°K. The temperature dependence of the
thermal conductivity was much the same for all compression pressures, which confirmed that the théoretical
relationships due to Dul'nev, Kaganer, and others are applicable, and also extends the range of utility of these
formulas up to 1300°K inclusive. The measurements also show that the three components of the effective ther-
mal conductivity in a granular material can be measured.

1. The conductivity due to actual contact between grains, which may be measured under high vacuum
up to 500°K,

2, The conduction due to radiation from particle to particle via the cavities, which may be determined
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under high vacuum above 800°K as the difference between the effective thermal conductivity and the contact
component.

3. The conductivity due to the gas between the particles, which may be determined as the difference
between the total effective thermal conductivity and the sum of the components due to radiation and contact.

This model for the transport mechanism allows one to examine each of the components separately,
especially via detailed measurements of the components in fairly simple experiments. For the same reason,
differential equations for the effective thermal conductivity in terms of these components are more realistic
and convenient,

The following formula applies for the steady-state effective thermal conductivity along the x coordinate:

aT aT oT oT
— =hp— F g — —_
he ox Rew Ox T A ox +hpe dax

and, correspondingly, for the nonstationary thermal conductivity:

or g /. oT a aT a aT
737273;('"” 6x}+6x (\A'ﬁx 6x)+6x (‘ px Bx)'

Dep. 780~76, February 19, 1976,
Original article submitted April 24, 1975.

THERMOPHYSICAL CHARACTERISTICS OF POLYETHYLENE
CONTAINING GLASS FIBER

M. M. Revyako UDC 536,21

A composite containing crosslinked polyethylene filled with glass fiber has been made, which has im-
proved heat resistance in combination with good physicomechanical parameters.

The initial material was low-density polyethylene grade 10702-020, which was filled with 5, 10, 20, or
40 wt. % glass fiber of length 5~10 mm, grade VSO-10V. The crosslinking agent was dicumyl peroxide, MRTU
(Interrepublic Technical Specification) 09-6273-69, which was used in the following weight ratios to the poly~-
ethylene: 3, 5, and 7 wt. %.

The degree of crosslinking in the polymer has a marked effect on the strength and thermophysical char-
acteristics.

Heating at a constant rate was used to determine the thermophysical characteristics.

The errors 6f measurement did not exceed the theoretical errors for the method (5% for A and 8% for
al. .

The results were used to draw up the following curves:
A=f(P}, a=[(P), c=f(P).

The thermal conductivity and thermal diffusivity increase with the degree-of filling; A and « fall over
the range 5-10 wt. % filling, the falls only exceeding the error of experiment slightly, however. The thermo-
physical parameters of composites containing up to 20 wt, % filler differed little from those of the initial poly-
ethylene. At higher filling contents, the thermal diffusivity and thermal conductivity increased.

The filler reduced the specific heat, the value 1.6 -10° J/kg -deg being attained at 40% filling, which is
less by almost a factor of 1.5 than that for pure polyethylene, the reason being that the specific heat of glass
fiber is less than that of polyethylene.

Dep. 784-76, February 16, 1976,
Original article submitted July 23, 1975,
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DOUBLE-CONTACT METHOD OF DETERMINING
MASS-TRANSFER COEFFICIENTS

D. D. Talin and V. V. Tereshatov UDC 66.021.,3

It is not practicable to determine by experiment the mass content of a transported material in various
solids, granular materials, or bonding agents, which complicates the determination of mass-transport co-
efficients. In that case, the coefficients can be determined as follows. A specimen with an initial specific
mass content uy, is put in contact with a standard specimen and a specimen of the same material but having a
different specific mass content uyy. The experiment is performed under isothermal conditions for a time r
such that the specific mass contents of all three bodies far from the contacts remain unchanged.

Measurements are made of the amounts of material transferred from body 1 to body 2 and to the stan-
dard,namely, Ms and M§, respectively.

The amount of material transferred through unit area in time = for bodies 1 and 2 can be put as
Mg = (uy0 — ug0) ¥ V—q—:’[ll ’ 1)

and for body 1 and the standard

M =2 (g —up) ¥ ‘1'."11 2)

From (1) and (2) we have
M2 (e — )
My - Uyp — Ugg '

(3)

The effective transport coefficient ay, for the material is found from (1), while (3) gives up.

The mass-transport potential 6 is deduced from the mass content of the standard body at the boundary
on the basis of

up=cmBp,
_which enables one to calculate the mean isothermal specific capacity cyy for the material.

This method has been used to determine transport coefficients for plasticizers in polymers with large
amounts of filler. The standard body was a stack of polyethylene filmg, which provided a simple system as
well as reliable determination of 4.

Dep. 779-76, February 12, 1976,
Original article submitted April 7, 1975.

GENERALIZED CONSTRUCTION OF ISOTHERM—DISPLACEMENT
LAWS FOR BOUNDARY BODIES

N. M. Tsirel'man , UDC 536.21

The temperature distribution in a body of regular geometrical shape can be represented as a series in
even powers of the coordinate:
T(x, T) = E Az (T) x21,
n=~0

and then the rate of displacement vg for the isotherms is
2 A;n () x2n
o = [Mo-x)] =0 . (1)
b ot &} 2§‘ A 2n—1
gy Hen () x

n==1
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Expressions for Ay, (r) have been used to show that the series in the numerator and denominator in (1) con-
verge in accordance with d'Alembert's criterion for constant values of the thermophysical parameters and
monotonic time variation A ) in the {emperature at the center.

It has also been shown that for Ay(r) ~ r (quasistationary states) that

ma

U =", (2)
while for Ayfr) ~ exp (—ar) (regular thermal state) that vg = B (1 — n)/BFo]g, respectively, for plate, cylin-
der, and sphere:

Jo () u
Ji{wam) 1
n

pyctg s Wy
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In the nonlinear case, where cp = cp(T) and A = A(T), it is found that

1 .
A@=Tx=0,1); 4= “oma A (D)

ma
1 dA m d1ngy 1 dink

A(0) = e P — 43
(4m+8)a dt 2m -4 dt 2 dt

If it is assumed that d Incp/dr and d In A/dr are bounded, the following formula is derived from (1) and
the values for Ay (r) for the rate of displacement of the isotherms in the central part of the body (x — 0):

ma (T)
R

v , @)
where a(T) is the thermal diffusivity of the material at the temperature applicable to the center at time t for
which the speed vy at point x near the center of symmetry is to be calculated.

Equation (3) can be used to determine the temperature dependence of the thermal diffusivity a = ¢ (T)
from a single experiment without restriction on the rate of change of the temperature distribution in the body,
and thus without relation to the form of the boundary conditions.

NOTATION

T, temperature, x and 1 = x/1, I,the dimensional and dimensionless coordinates of a point in the body,
and also the characteristic dimension of the body (half-thickness for a plate, radius of cylinder or sphere),
cp, A, a = A/cp, the bulk specific heat, thermal conductivity, and thermal diffusivity, r, Fo = ar/l %, time
and Fourier number; py, the first root of the characteristic equation for the thermal conduction,

Dep. 781-76, February 16, 1976,
Original article submitted November 4, 1975,

A NONSTATIONARY PROBLEM IN CONVECTIVE DIFFUSION

A. T. Chub and V. M. Zakopailo UDC 621.38

Distribution of the concentration has been determined for the reducing component in a working electrolyte
in the cathode region of a chemotron transducer in the form of a truncated cone. The region is axially sym-
metrical, sothe concentration distribution is two-dimensional if the region is treated as a truncated wedge.

In practice, the truncated cones have radii at the ends that differ little, so the wedge may be approximated as
a circular sector bounded by the arcs of two concentric circles r = ¢; and r = @, (a; < a,) and two sections of
straight lines constituting an angle 2¢, (¢; > 0).

It is assumed that the readout electrode is the cathode, which coincides with the side surface of the
truncated cone, while the electrolyte flows through the cathode channel in a laminar fashion, and the device
works in the limiting diffusion-current mode. It is also assumed that the concentration of the active compo-
nent at the inlet to the cathode channel is C; = const, whereas it is zero at the outlet, i.e., Cla,, @, t) =0if
t>0and —g =@ = ¢,
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-In that case, the derivation of the concentration in this region amounts to solving the equation for con-
vective diffusion:
9 aw €,
a | r or =Dyx )
subject to the following boundary and initial conditions:
C(r, 1. H=Clr, — @1, ) =0, a; <r<ay, t >0,
Clay, ¢, 1)=Cy=const, —q,<@< @, £>0,
C("z' Py t) =0, — @ <P <y, t>0,
C(r' P, 0) =C0(r! (P)! ay < r<ag, ]q:! < Q1.
A laplace transform is applied to (1) to give

20 1—2v 50 1 C -
D[a €4 7% +—-"—£]~pc r, & P)=—Co(r, ®), @)
or® r ar re og?

where

The substitution C =r*Ufr, ¢, p) transforms (2) to

U 1 U 1 U 2 Co (r,
, EEA P10 @)

T T Ty Taae w0 DY

It is shown that a special integral transform applied to (3) with the boundary conditions appropriately
transformed can give the exact solution

, —
°§' Rn{l/-g— r, P,s)ssh:rs

2
U, CP,P)=;[—.;, F(p, p,s) ———s ds,
: V5]

where; Flp, ps 8), Rp(¥ (/D)r, p, s) are known functions and Jig is a Bessel function of complex argument;
then C =rYU(r, ¢, p), and thus the Riemann — Mellin formula gives

1 —
C(ro g t)= FYC(R @, p)ePldp.

i,
L

Dep. 789-76, February 25, 1976.
Original article submitted August 28, 1975,

NONSTATIONARY MOTION OF A FLUID IN A
CYLINDRICAL SHELL WITH AN ADDITIONAL
'NOISE SOURCE

A. A. Kandaurov, A. K. Gallyamov, UDC 532.51
and T. M. Mubarakov

Differential equations have been solved for the nonstationary motion of a fluid in an axially symmetrical
shell of rotation neglecting the frictional loss; these characterize the process with sufficient precision only
for a shell having no additional noise sources at any point along the length, such sources being leaks, blind
branches, partly blocked pressure controls, and so on.

These additional sources of interference substantially distort the pattern of the nonstationary processes;
interference then occurs between oscillations of various frequencies and amplitudes, which can cause auto-
matic-control or monitoring devices to trigger, and can also cause overshoot and so on.
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Nonstationary motion of a fluid in a eylindrical shell with an additional noise source is considered for
the case of instantaneous occurrence of a perturbation (for instance, connection or disconnection of a pump,
or opening or closure of a pressurizing system).

It is shown that the system of equations for the nonstationary motion in the presence of this additional
noise and simple transformations produce an equation with a deviating argument of neutral type.

The case is that of a noise source producing a constant delay .

It is assumed that the speed of propagation ¢ for the perturbations is constant., Mikusinsky transfor-
mations are used for zero initial conditions and for boundary conditions specified as piecewise-continuous
time functions to derive solutions for the equation without delay and with delay. An explicit operator repre-
sentation is used to examine the behavior of the solutions. It is found that the liquid in any given section is
involved in several different types of motion, the number of these increasing with time. Oscillations arising
in the initial section propagate with the velocity c throughout the length, Distorted oscillations begin to propa-
gate for 7 < « after time intervals t =jr (j =1, 2, ...), i.e., noise effects arise. These oscillations also
propagate with speed ¢, and at'an arbitrary point x show distortions of a definite form. The propagating waves
are reflected from the ends, and the distortion remains the same for any point in the range for all reflections.,

A comparatively simple formiula describes the nonstationary motion in a cylindrical shell with such an
additional noise source (leaks, blind sections, and so on), and this can be used as a working formula,

Dep, 783-76, February 25, 1976.
Original article submitted March 28, 1975,

AN ITERATIVE METHOD IN OPTIMAL CONTROL
OF METAL HEATING

V. V. Kulikov and A. F. Kravtsov UDC 669.046,518.61

Optimal control in a metal heater involves a system with distributed parameters, no matter what the
performance criterion, and the system is described by differential equations in partial derivatives in conjunc-
tion with complex boundary and initial conditions.

Numerical methods bave to be used in such cases, but the lack of suitable computational techniques has
previously prevented one from utilizing numerical methods fully, in particular, iterative methods. Fast digi-
tal computers incorporated intc automatic-control systems for metal heating can provide adequate accuracy in
defining the optimal control input by iterative methods, one advantage of these being that the operations are
always of the same type, and therefore are readily programmed.

Quasilinearization is used as an iterative method in optimal control for metal heating in a system with
distributed parameters; the method is as follows. The differential equation for the controlled process is used
with the boundary conditions which are supplemented by equations for the influence functions (conjugate sys-~
tem). Nominal values are then selected for the phase variables and influence functions to satisfy as many of
the boundary conditions as possible, and the optimality conditions are used to determine the nominal control
action. The equationsforthe controlled process and the conjugate system are linearized with respect to this
nominal input, after which a sequence of inhomogeneous two-point boundary-value problems is solved. The
solution is improved until the equations for the heating and those in the conjugate system are satisfied with the
required accuracy.

This method is applicable to define the most rapid mode of heating, and expressions are derived that
can be utilized in the iteration algorithm to define the optimal solution.

This method can also be used in minimizing the energy consumption in heating, minimizing scaling, and
so on,

Dep. 788-76, February 6, 1976,
Original article submitted December ‘9, 1975,
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THERMAL CONDUCTIVITY IN A LAYERED SYSTEM

N. V. Pal'tsun and B. M. Prokof'ev UDC 536.21

A method is given for determining two-dimensional nonstationary temperature distributions in a multi-
layer system,

The system consists of n homogeneous plane-parallel layers of arbitrary thickness that differ in thermal
diffusivity. Each layer has its own local coordinate system xkOyk, with the x| axis taken as the symmetry
axis of the layer and the yi axis lying along a common straight line perpendicular to the x; axes. The layers
are numbered from the top downward.

The temperature distribution in any layer is defined by the function Tk (x, y, t), which is a solution o
the equation for nonstationary thermal conduction. ILaplace and Fourier integral transforms with respect
tot and x, respectively, are applied in sequence to reduce this equation to an ordinary second-order differen-
tial equation with congtant coefficients for the desired function, The general solution is dependent on two ar-
bitrary coefficients Ay and By, while the solution for the system as a whole is dependent on 2n coefficients,
which can be derived from the boundary conditions and the conditions for temperature and heat-flux continuity
at the common boundaries. The continuity conditions provide recurrence formulas for the coefficients ok and
Bks which are equivalent to the unknown coefficients Ak and Bx. These recurrence formulas define all the
functions akx and Py and, consequently, all the Tk(@, y, p) if one can define a single pair of the a) and 3k,
for instance oy and 3.

The values for a4 and 3y have been determined for major boundary-value cases for such a system,
which thus yield the other coefficients via the recurrence formulas, which involves solving only one linear
algebraic equation, no matter what the number of layers. For instance, if the following conditions are speci-
fied for the upper and lower boundaries of the system,

0T (£, —hn, 1)

Ty (o by ) =5 D), 5

-0, @)

then the expressions for an and 8p are used with (1) in terms of the coefficients oy and 34 to give
BI=HTL (Ct, P, hlr hzv c e ey hn) @y,

where hy, hy, ..., hp are the half-thicknesses of the corresponding layers and Hn is the function characteriz-
ing the thermophysical parameters of the system. This also shows that a single equation for ay is sufficient
to solve the problem for the transform region.

The temperature distribution in the multilayer system can be derived via inversion formulas when ak
and Bk have been derived.

Computational difficulties are involved in deriving Hp, but these may be avoided by employing a recur-
rence formula for the funetion.

The application to a two-layer system is discussed.

Dep. 786-76, March 9, 1976.
Original article submitted June 12, 1975.

DROPLET SIZE IN MONODISPERSE LIQUID SPRAYING

V. F. Dunskii and N. V. Nikitin UDC 66.069.8

Approximately identical drops are produced when a nonwetting liquid flows at a very low rate from a
capillary under gravity; the drop diameter d = (12Rcr/pg)1/ 3 given by theory is confirmed by experiment, e.g.,
for drops of water formed at the lower end of a vertical steel capillary of radius R = 0,024 or 0,033 cm.

About 30 drops were produced in 1 min. The ratio of the mean measured d to the calculated value was 0.89-
0,92, i,e., the agreement was close.
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When a nonwetting liquid is dispersed by a rotating perforated drum (at very low liquid flow rates), d =
(12Ra/prw)1/ 3, and experiments on this were based on the drum of outside radius r = 2.5 cm and radius for a
single radial hole R = 0,025 cm. Water was supplied at a flow rate Q = 0.004 cm®/sec with the drum rotating
at w =157 sec™!. The mean values of d differed from the calculated values by 9-10%. The coefficients of
variation for the deviations of d from the mean were 0.84-1.5%, i.e., the drops were highly uniform in size.

In the case of a wetting liquid dispersed by a rotating disk d = (C/w)(cr/pr)i/z, with the constant C close
to 2.7 for mineral oils [L1]. The formula has been verified for w in the range from 30 to 10,000 sec-!, r from
2to 11 cm, p from 0.9 to 13.6 g/cm®, ¢ from 29 to 465 g/cm?, 7 from 0.01 to 26 g/ecm- sec, and d from
0.003 to 0.4 cm. Inthis range, C varies from 1.9t0 4.6 [1-3]. The formula is also applicable for a wetting
liquid dispersed by a rotating perforated drum ¢this has been cerified for w of 105-314 sec™!, r of 1-5 em, R
of 0,04-0.2 cm, ¢ from 29 to 33 g/sec, and 5 0f0.19-2.4g/cm -sec). Throughout this range, the values of C
for drum and disk were similar.

These formulas for the droplet sizes for a variety of dispersal processes thus give results in total agree~
ment with experiment, i.e., are suitable for approximate calculations.

LITERATURE CITED

1. W. Walton and W, W. Prewett, in: Aerosols in Agriculture [Russian translation], Moscow (1965), p.
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Original article submitted May 29, 1974,

SATELLITE DROPLETS IN MONODISPERSE
DROPLET PRODUCTION

V. F. Dunskii, N. V. Nikitin, UDC 66.769.8
and G. A. Shul'ginova

When a liguid is being dispersed as droplets of the same size, smaller polydisperse satellite droplets
are sometimes produced.

A liquid emerging from a capillary under gravity at very low flow rates (primary state) produces only
identical droplets (no satellites); satellite droplets are produced only at elevated flow rates (near the critical
flow rate and in the second mode of spraying).

In the case of a rotating sprayer, the auxiliary droplets are formed even in the first state, i.e., at
very low flow rates. Experiments have been performed on liquid spraying at very low flow rates, and even
a rate of Q = 0.00027 cm®/sec did not yield droplets without satellites, but in that case the main droplets and
the satellites had a very narrow range of sizes, with the number of satellites equal to the number of main
droplets, the diameter ratio being about 0.3 and the proportion of satellites by weight about 3%.

The spread in the droplet sizes increases with Q ¢he width of the depositibn ring increases).
Similar results have been obtained in dispersing a liquid with rotating perforated drums.

The probable cause of the differences is that droplets produced by gravity alone grow in virtually im-
mobile air, whereas centrifugal dispersal results in large speeds of the dispersing system with respect to the
air, i.e., large air-resistance forces act on the droplets. It is clear that at the start of formation, where the
droplet projects only a little beyond the outer edge of the dispersal system, the air resistance should be of
secondary importance, but in the second (final) stage the air resistance increases, and this would appear to
accelerate the second stage, i.e., droplet detachment, which implies accelerated rupture in the neck between
the drop andthe liquid at the edge (by comparison with immobile air), with the result that satellite droplets are formed.

Dep. 1844~-76, September 8, 1975,
Original article submitted March 11, 1975,
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HYDRODYNAMIC BEHAVIOR OF A TWO-PHASE
VORTEX FLOW AT LOW VORTICITIES

V. P. Gribkova, L. V. Novosel'skaya, UDC 532.529.5
and I. M. Plekhov '

A mathematical model is presented for the hydrodynamic processes in an absorption apparatus employ~
ing a rising two-phase spiral flow.

In such a case, the laminar liquid film is exposed to a turbulent spiral gas flow, and it is assumed that
the liquid and gas are incompressible, with the flow in the steady state and axially symmetrical. The film
thickness is much less than the diameter of the contact device, so the problem is one involving the differen-
tial equations for a boundary layer, which can be considered as lying on a flat surface.

The viscous tangential stress is accompanied by turbulent stresses in the gas flow, and these can be
discussed in terms of available measurements. The mathematical model is described by a system of equa-
tions for the motion and for the continuity for the turbulent gas flow and for the laminar film, which are sup-
plemented by boundary conditions for the immobile surface (attachment condition), for the interface (equality
of the velocities and tangential stresses, and absence of mass transfer through the interface), and also for the
flow (constancy of the axial component of the velocity). The film thickness may be determined by employing
the equation for the constancy of the liquid flow rate in each section.

The problem has been solved with a Minsk-22 computer.

The tangential, axial, and radial components of the velocity in the film and the boundary gas layer have
been determined in relation to the actual speed of the gas, the liquid input, and the angle of the spiral; values
have also been derived for the tangential stress at the interface, the film thickness, and other quantities,
which are presented in figures and a table.

For instance, for a liquid flow rate G = 0.115 kg/msec, an axial speed ugx = 10.75 m/sec, and a film-
thickness ranging from 6 = 0.75°107* m at x = 0,075 mto 6 = 1.8 +10~* m at x = 0.078 m will give a tangential
stress 75 under analogous conditions ranging from 5 to 2.5 kgf/m?.

These results show that a spiral flow differs from an axial flow in giving high velocity gradients near the
interface, which accelerates the mass transfer.

Dep. 1910-76, March 24, 1976.
Original article submitted June 9, 1974,

NONSTATIONARY THERMOELECTRIC COOLING
IN A TWO-STAGE T.HElRMOE LEMENT

E. K. lordanishvili and B. E.-Sh. Malkovich UDC 537.324

Experimental and mathematical studies have been made on nonstationary thermoelectric cooling in a
two-stage thermoelement in the constant-current mode with separate supplies to the stages.

The thermoelements were made as previously described [1,2]; the height and area of a branch in the
working section WS were 1 cm and 0.01-0.05 cm?, while those for the rear stage RS were 4~65 cm and 2 cm?,
Experiments have been made with the independent and joint operation of the stages. If only the rear stage
carries current, the peak cooling in the working stage, which here is a passive load, does not attain the opti-
mal cooling for a single thermoelement in the steady state (ATopt); the maximum cooling in that case (AT =
0.6 AT opt) occurs when the rear stage carries a current 2Igpt (Iopt is the optimum current). If only the work-
ing stage carries current, the rear stage serves as a heat sink, in which case the peak and steady-state de-
grees of cooling attained for Iopt are the largest, the values being, respectively, 0.7ATopt and 0.6 ATopt. If
the two stages are operated together, the cooling is dependent not only on the ratio between the currents in the
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stages but also on the connection sequence. The largest temperature reduction (~1.2ATopt) occurs for Igg =
2lopt and Iwg =Igpt. Here the current in the working stage is switched on at an instant such that the mini~
mum temperatures due to the two currents are attained simultaneously.

The Laplace transformhasbeen applied to derive analytical expressions for the cold~junction tempera-
ture in the working stage when current flows only in one of the stages, and also when the two stages work to-
gether. Ifthe rear stage alone is operating, the temperature at the cold junction in the working stage is de-
pendent on the current. Ifthe current is small (IRS < 2Iopt), the maximum cooling at the cold junction ina
two-stage thermoelement, ATopt, is 12/2 pw, which corresponds to Iopt and is attained in the steady state.

In the range IRS > 2Ippt, the maximum cooling is a peak effect and occurs at small times. The peak cooling
AT in that case is dependent on the ratio of the areas of the stages 3 = SRS — Sws)/ GRS +Sws) and on the
parameter h/2/aty (h is the height of the working stage, a is the thermal diffusivity of the material, and tm

is the time at which the maximum cooling is attained). Thevalueof ATy increases as h/2vVaty decreases and
as B increases, but it does not exceed U%/r pn (Il is the Peltier coefficient, p is specific resistance, and « is
thermal conductivity). If the working stage alone carries current, it operates as a finite body if the height h is
small or if the time is large, and the heat conduction is then dependent on the heat-transfer conditions at the
hot end. If the area of the working stage is much less than that of the rear stage, then the Peltier and Joule
components of the heat are effectively transferred to the rear stage, and then the working stage behaves as a
single thermoelement whose hot-junction temperature is maintained constant. The maximum steady-state
cooling in the device is ATopt = %/2pwn. If the areas of the stages are comparable, the heat transfer through
the rear stage is insufficient, and the Peltier heat at the hot junction in the working stage and the Joule heat

in the volume of the device generally together reduce the limiting cooling attained in the working stage. If

the two stages operate together, the peak cooling is maximal if the two components themselves are maximal,
since the times at which the peak coolings are attained at the cold junction of the working stage due to each
stage separately are not the same, in which case the currents must be applied to the stages not simultaneously
but at instants such that the peak coolings coincide in time. Inthat case, the maximum value for the peak cool-
ing [ + (2/7)(@%/2pw)] is about 0.8 of the limiting cooling produced by a two-stage thermal element in the steady
state.
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SOLUTION OF A NONLINEAR EQUATION FOR THE
SWELLING OF A CYLINDRICAL FUEL ROD

V. V. Vakhromeeva and 8. I. Tikhonova UDC 518:539.3

A pumerical method is presented for solving the nonlinear equation for swelling in a cylindrical fuel rod;
a model for gas swelling is used, which involves the assumption that the nuclear fuel consists of regularly dis-
posed identical spherical cells in the initial state, each of which is a thick-walled hollow sphere. Any elemen-
tary volume of the body contains a reasonably large number of spherical cells.

The swelling in the individual cells is determined by the creep in the thick-walled hollow spheres, which
are loaded by internal pressure from the gaseous fission products, which accumulate in the free volume as
the fuel is consumed, while the external pressure is determined by the interaction between the individual swel-
ling elements and is equal to the component of the spherical macrostress tensor arising from creep in the fuel
core.

The problem is that of numerical solution of a nonlinear equation for S(p, t):
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The method consists in selecting a parameter £ such that the norm of the finite~difference operator
becomes much less than 1, which provides rapid convergence in the successive approximations. Then e =
c1) 4 5¢ is ad justed to give the required values of € by successive approximation in the first time step,
the finite-difference equation for () being solved by means of the values of the corresponding functions ob-
tained for £@-1), The solution to the nonlinear swelling equation for the subsequent steps is then found by
using the solution for the previous step as the zeroth approximation in the next step.
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TEMPERATURE DISTRIBUTION AND THERMAL
STRESS IN THE WALL OF AN INSULATED PIPELINE

I. S. Reshetnyak and I. N. Manusov UDC 539.43:536.244

An approximate analytical solution is presented for the internal conjugate problem for nonstationary
heat transfer in an insulated pipeline subject to periodic variations in the temperature of the fluid at the inlet,
Thermal stresses with a cyclic time course arise in the wall, which can cause the material to fail from ther-
mal fatigue.

The temperature distribution has been derived by operational methods by approximate expansion of the
exponential in the image region:

1+2/2
1—2/2

expz =
The thermal stresses in the wall are determined from standard expressions from the quasistatic theory
of thermoelasticity on the assumption of a planar state of stress in the pipeline wall.

A detailed analysis of the temperature distributions and thermal stresses in the stationary-periodic
stage is presented.
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INTEGRAL REPRESENTATION OF SOLUTIONS TO
NONCLASSICAL THERMAL-CONDUCTION PROBLEMS

Yu. A. Mel'nikov and I. M. Dolgova UDC 536.24.02

Considerable computational difficulties are involved with two- and three-dimensional problems in thermal
conduction for multicoupled regions of complex shape; these difficulties increase if there are nonuniformities
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(for instance, stratified bodies). Such problems arise in many aspects of science and technology, so efficient
algorithms are of some considerable interest.

Two-dimensional problems in steady-state thermal conduction are considered for a multilayer strip
weakened by holes of arbitrary shape, and also a one-layer strip with a finite number of holes; an algorithm
is described that uses integral representation of the target quantities, which is applicable also to a three-
dimensional layer with cavities.

In the first stage, the Green's matrix is constructed for the boundary-value problem for a multilayer
strip. The boundary conditions at the contact lines presuppose ideal thermal contact, while the boundary
conditions at the outer surfaces may take any form. The Green's matrix is constructed by trigonometric
expansion for one direction, with subsequent variation of the arbitrary constants, which results in systems
of ordinary differential equations. The solution is sought as a finite sum of contour integrals over the bound-
aries of the holes. Thekernel of this integral representation is the Green's matrix, which means that the initial
differential equations can be satisfied exactly. The weights of the integrals are determined by satisfying the
boundary conditions at the edges of the holes. This resulls in systems of integral equations of Fredholm type,
which are readily solved, for instance,by quadrature-formula methods.,

Numerical examples are given of realizations of this algorithm yielding detailed temperature distribu-
tions, which are presented as isotherms in figures. The computations were performed with an M-222 com-
puter, the time needed to determine the steady-state temperature distribution in the strip varying from 5 to
10 min,
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